Theorems Relating Polynomial Approximation, Orthogonality and Balancing Conditions for the Design of Nonseparable Bidimensional Multiwavelets
نویسنده
چکیده
We relate different properties of nonseparable quincunx multiwavelet systems, such as polynomial approximation order, orthonormality and balancing, to conditions on the matrix filters. We give mathematical proofs for these relationships. The results obtained are necessary conditions on the filterbank. This simplifies the design of such systems.
منابع مشابه
Polyphase Filter and Polynomial Reproduction Conditions for the Construction of Smooth Bidimensional Multiwavelets
To construct a very smooth nonseparable multiscaling function, we impose polynomial approximation order 2 and add new conditions on the polyphase highpass filters. We work with a dilation matrix generating quincunx lattices, and fix the index set. Other imposed conditions are orthogonal filter bank and balancing. We construct a smooth, compactly supported multiscaling function and multiwavelet,...
متن کاملHigh-order balanced multiwavelets: theory, factorization, and design
This paper deals with multiwavelets and the different properties of approximation and smoothness associated with them. In particular, we focus on the important issue of the preservation of discrete-time polynomial signals by multifilterbanks. We introduce and detail the property of balancing for higher degree discrete-time polynomial signals and link it to a very natural factorization of the re...
متن کاملMultiwavelets: Regularity, Orthogonality and Symmetry via Two-scale Similarity Transform
An important object in wavelet theory is the scaling function (t), satisfying a dilation equation (t) = P C k (2t ? k). Properties of a scaling function are closely related to the properties of the symbol or mask P (!) = P C k e ?i!k. The approximation order provided by (t) is the number of zeros of P (!) at ! = , or in other words the number of factors (1+e ?i!) in P (!). In the case of multiw...
متن کاملThe best uniform polynomial approximation of two classes of rational functions
In this paper we obtain the explicit form of the best uniform polynomial approximations out of Pn of two classes of rational functions using properties of Chebyshev polynomials. In this way we present some new theorems and lemmas. Some examples will be given to support the results.
متن کاملDilation Matrices for Nonseparable Bidimensional Wavelets
For nonseparable bidimensional wavelet transforms, the choice of the dilation matrix is all–important, since it governs the downsampling and upsampling steps, determines the cosets that give the positions of the filters, and defines the elementary set that gives a tesselation of the plane. We introduce nonseparable bidimensional wavelets, and give formulae for the analysis and synthesis of imag...
متن کامل